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Abstract 

A representation of generalized Weierstrass formulae for an immersion of generic surfaces into a 
4-dimensional complex space in terms of spinors treated as minimal left ideals of Clifford algebras 
is proposed. The relation between integrable deformations of surfaces via mVN-hierarchy and 
integrable deformations of spinor fields on the surface is also discussed. 0 2000 Elsevier Science 
B.V. All rights reserved. 
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1. Introduction 

The theory of integrable deformations and immersions of surfaces due its a close rela- 
tionship with the theory of integrable systems at the present time is a rapid developing area 
of mathematical physics. One of the most powerful methods in this area is a Weierstrass 
representation for minimal surfaces [ 11, the generalization of which onto a case of generic 
surfaces was proposed by Konopelchenko in 1993 [2,3] served as a basis for the follow- 
ing investigations. So, the generalized Weierstrass formulae for conformal immersion of 
surfaces into 3-dimensional Euclidean space are used for the study of the basic quantities 
related to 2D gravity, such as Polyakov extrinsic action, Nambu-Goto action, geometric 
action and Euler characteristic [4]. This method is also intensively used for the study of 
constant mean curvature surfaces, Willmore surfaces, surfaces of revolution and in many 
other problems related with differential geometry [5-141. A further generalization of Weier- 
strass representation onto a case of multidimensional Riemann spaces, in particular onto 
a case of 4-dimensional space with signature (+, +, +, -) (Minkowski space-time) has 
been proposed in the recent paper [ 151. 
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In the present paper we consider a relation between a Weierstrass representation in a 
4-dimensional complex space C4 and a Dirac-Hestenes spinor field which is defined in 
Minkowski space-time R’,3 . Dirac-Hestenes spinors were originally introduced in [ 16,171 
for the formulation of a Dirac theory of electron with the usage of the space-time algebra 
Cel,3 [18] in R’*3 (see also [19]). On the other hand, there is a very graceful formulation 
[20-231 of the Dirac-Hestenes theory in terms of modem interpretation of spinors as min- 
imal left ideals of Clifford algebras [24,25], a brief review of which we give in Section 2. 
In Section 3 after a short historical introduction, generalized Weierstrass formulae in C4 
are rewritten in a spinor representation type form (matrix representation of a biquatemion 
algebra C:! 2 M2 (C)) and are identified with the Dirac-Hestenes spinors, the matrix rep- 
resentation of which is also isomorphic to M2(C). It allows to use a well-known relation 
between Dirac-Hestenes and Dirac spinors [23,26] (see also [27]) to establish a relation 
between Weierstrass-Konopelchenko coordinates for surfaces immersed into C4 and Dirac 
spinors. Integrable deformations of surfaces defined by a modified Veselov-Novikov equa- 
tion and their relation with integrable deformations of Dirac field on surface are considered 
at the end of the Section 3. 

2. Spinors as minimal left ideals of Clifford algebras 

Let us consider a Clifford algebra CL,,, (V, Q) over a field K of characteristic 0 (K = 
R, K = 52 = R @ R, K = C), where V is a vector space endowed with a nondegenerate 
quadratic form 

Q = xf + . . . + x; - . . . - xi+,. 

The algebra CC,,, is naturally Z2-graded. Let CC:,, (resp. Cl,,) be a set consisting of all 
even (resp. odd) elements of algebra CC,,,. The set CC;,, is a subalgebra of CL,,,. It is 
obvious that CC,,, = Ct$ 4 @ Cl; 4. 

When it is odd, a volume element w = e12...p+q commutes with all elements of algebra 
C&,,, and therefore belongs to a center of Cl,,, . Thus, in the case of n is odd we have for 
a center 

Z 
R@iR ifw2 = -1, 

“‘= R@eR ifw2=+1, (1) 

where e is a double unit. In the case of n is even the center of Cl,,, consists the unit of 
algebra. 

Let Rp.4 . = CC, q(RPJ, Q) be a real Clifford algebra (V = RP.4 is a real space). 
Analogously, in the case of a complex space we have C,,, = CC,,,(CY, Q). Moreover, 
it is obvious that C,,, g C,, where it = p + q. Further, let us consider the following most 
important in physics Clifford algebras and their isomorhisms to matrix algebras: 
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quaternions h.2 = H, 

biquatemions C2 = R3,o g M2(C), 

space-time algebra R1.3 g W(H), 
Dirac algebra C4 = &,I g M4(C) g M2(Cz) 

The identity C2 = R3,o for a biquatemion algebra known in physics as a Pauli algebra is 
immediately obtained from the definition of the center of the algebra Cl,,, (1). Namely, for 
R3.0 we have a volume element w = eiz3 E 23.0 = R $ iR, since w2 = -1. The identity 
C4 = R, 1 is analogously proved. The isomorphism R, 1 Z Mz(C2) is a consequence 
of an algebraic modulo 2 periodicity of complex Clifford algebras: C4 2 Cz @ C: 2 
C2 @ M2(C) g M2(C2) [28-301. 

The left (resp. right) ideal of algebra Ce,., is defined by the expression Cep.ye (resp. 
EKC~,~), where e is an idempotent satisfying the condition e’ = e. Analogously, a minimal 
left (resp. right) ideal is a set of type Zp,4 = Ce,.,epy (resp. eP4Cep,4), where epq is 
a primitive idempotent, i.e., e& = epq and epq cannot be represented as a sum of two 

orthogonal idempotents, i.e., epq # fpq + g,,, where fp4gp4 = g,, fpy = 0, fifq = f,,‘,, 
2- g/v - g,, . In the general case a primitive idempotent has a form [20] 

epq = i(l + e,,)i(l + ecr2). . . i<l + e,,), (2) 

where e,,,..., ecyn are commuting elements of the canonical basis of Cl,,., such that 
(e,,)2 = 1, (i = 1, 2, . . . , k). The values of k are defined by a formula 

k = q - rq_p, (3) 

where r-i are the Radon-Hurwitz numbers, values of which form a cycle of the period 8: 

Ti+s = Ti + 4. (4) 

The values of all ri are 

i 01234567 

ri 0 1 2 2 3 3 3 3 

For example, let consider a minimal left ideal of the space-time algebra RI ,3. The Radon- 
Hurwitz number for algebra Rt.3 is equal to r,_, = r:! = 2, and therefore from (3) we 
have k = 1. The primitive idempotent of R 1.3 has a form 

e13 = ;(I + e0L 

or e13 = $ (1 + &), where rc is a matrix representation of the unit ec E RI ,s. Thus, a 
minimal left ideal of RI ,3 is defined by the expression 

11.3 = R1.3;(1 + ro). (5) 

Analogously, for the Dirac algebra R. 1 on using the recurrence formula (4) we obtain 
k = 1 - r-3 = 1 - (rs - 4) = 2, and a primitive idempotent of R.1 may be defined as 
follows: 

e41 = t(l + G)Jj(l + irl2), (6) 
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where rl2 = rr r2 and ri(i = 0, 1,2, 3) are matrix representations of the units of 

R4.I = c4: 

Further, for a minimal left ideal of Dirac algebra 41 = &, 1 i (1 + fc) i (1 + irt2) using 
the isomorphisms &,I = C4 = C @I R1.3 G M2(C2), R& 2 Rr,3 Z Mz(H) and also an 

identity Rl,3e13 = R13e13 [ 22,231 we have the following expression [27]: 

14.1 = &,1e41 = CC 8 &,3)e41 g R&e41 z R1.3e41 

= Rl,3e13;(1 + iI’l2) = Rt3er3i(1 + ifl2). (7) 

Let @ E &,I Z m(C) be a Dirac spinor and 4 E Rt3 2 R3,u = Cz be a Dirac- 
Hestenes spinor. Then from (7) the relation immediately follows between spinors @ 
and 4: 

@ = @!j(l + IYc)$(l + irl2). (8) 

Since 4 E R:3 2 R3.0, the Dirac-Hestenes spinor can be represented by a biquatemion 
number 

4 =a0 + UO’lYor + ao2& + ao3r03 + a12r,2 + a13r13 + a23r23 + a0123ro,23. 

(9) 

Or in the matrix representation 

where 

41 = a0 - ia12, t#q = a3’ - iaz3, 43 = ao3 _ ia0’23, ti4 = .O1 + iao2. 

(10) 

Finally, from (8) it follows that for the Dirac spinor # and also a space-time spinor 2 = 
41; (1 + rc) we have expressions 
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which are minimal left ideals of algebras R, 1 and RI,~, respectively. 
The Dirac spinor @ may be considered as a vector in the 4-dimensional complex space C’ 

associated with the algebra Cd. However, from a physical point of view it is more natural to 
consider the spinor @ in space-time R ‘s3. In connection with this, let us introduce (following 
[21-23,261) a more rigorous definition of spinor as a minimal left ideal of algebra Cl,,,,. 

Let $3~ = {CO, C, X, . . .) be a set of all ordered orthonormal bases for R”,Y. Any two 
bases Z(), 2 E ‘2?c are related by the element of the group Spin+@, q): 

2 = z&ou-‘, u E Spin+(p, 9). 

Analogously, for the primitive idempotents defined in the basis C E 5%~. and denoted as 

ez,,. es, . . ., we have eE = uec”u-‘, u E Spin+@, q). Then the ideals lx,, , Zs, 1,. . . . 
are geometrically equivalent if and only if 

I, = uz&u-‘, u E Spin+@, q), 

or, since u Ic,, = Iz; : 

I2 = z&u-‘. 

Therefore, an algebraic spinor for R P.4 is an equivalence class of the quotient set ( ZZ. ) /R, 
where (ZC} is a set of all geometrically equivalent ideals, and @c,, E ZcO and 02 E Is are 
equivalent, 02 Z @zo(modR) if and only if @z = @z,,u-‘, u E Spin+(p, q). 

3. Weierstrass representation for surfaces in space C4 

Historically, the Weierstrass representation [l] appeared in the result of the following 
variational problem: among the surfaces restricted by some curve for finding such a surface, 
the area of which is minimal, i.e., it is necessary to find a minimum of the functional 

S=//d+Pz+qzdxdy. 

where p = dz/ ti, q = dz/dy, z = f(x, y) is an equation of the surface. The Euler 
equation for this problem has a form 

This equation expresses a main geometrical property of such a surface: in each point the 
mean curvature is equal to zero. The surface which possesses such a property is called a 
minimal surface. If we compare a region 9X of the surface with a region @ of the flat surface 
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so that the point on ?E with the coordinates (X' , X2, X3) corresponds to a point w = u + iv 
of region 65, then for the minimal surface we have the equations 

a2x1 a2x1 a*x* a*x* a2x3 
-+- 

au* ad 
= 0, -+- 

au* a9 
=o, =+s=o. 

solutions of which are of the form 

X1 = Re f(w), X2 = Re g(w), X3 = Reh(w), 

at 

(f’(W))* + (g’(w)>* + (h’(w)>* = 0. 

The functions satisfying this equation are 

f’(w) = i(G* + H*), g’(w) = G* - H*, h’(w) = 2GH, 

where 

w 

X’ = C’ + Re 
s 

i(G* + H*) dw, 

WO 

W 

X*=C*+Re (G*-H*)dw, 
J 

WO 

W 

X3 =C3 +2Re 
J 

GHdw. 

wo 

(11) 

Here G(w) and H(w) are holomorphic functions defined in a circle or in all complex plane. 
After substitution of variables. 

H(w) 
S=i$+iq=- 

G(w) ’ 
G*$ = F(S), 

the equations (11) take the form 

dX’ = Re[i(l + s*)F(s) ds], 

dX* = Re[(l - s*)F(s) ds], 

dX3 = Re[2sF(s) ds]. 

Thus, for an every analytic function F(s) we have a minimal surface. 
Further, let us consider generalized Weierstrass representation for surfaces immersed into 

4-dimensional complex space C4, which, as known, is associated with the Dirac algebra 
Cd. In this case generalized Weierstrass formulae have a form 
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X2 = ; s ($11Cr2dl+qamdz), 

I- 

X3 = ; 
J 

(9,hq~2 d.5 - 4~1+2 dz), 

I- 

(12) 

X4 = ; I (chv:!dZ+w1Cr2dz), 

$a; = PL. %Yy = -P1Cl‘a, Cl = 1,2, (13) 

where I+, q and p are complex-valued functions on variables z, Z E C, f’ is a contour in 
complex plane C. We will interpret the functions Xi (z, Z) as the coordinates in C4. It is 
easy to verify that components of an induced metric have a form 

4 
gzz = z = c (Xi>2 = 0, 

i=l 

4 

c gzz = <x;x;, = lcrl Ilr2cDlV2. 
i=l 

Therefore, the formulae ( 12) and ( 13) define a conformal immersion of the surface into C4 
with an induced metric 

The formulae (12) may be rewritten in the following form 

d(X’ + iX2) = ir+kl& dj, 

d(X’ - iX2) = -iql(p2 dz, 

d(X4 + iX3) = i+lq2 dZ, 

d(X4 - iX3) = ilpl& dz, 

or 

d(X400 + X’crl + X202 + X303) = i 
vole2 dz +I @2 dZ 
~1~2 dz 1cr1q2 di ’ 

where 

uo=(:, ;>, u*=yl ;), u2qp ;), n,=(;i p) 

(14) 

are matrix representations of the units of quatemion algebra Ro2 = H : ei + ai (i = 
0, 1,2), e21 + ~3. It is easy to see that the left part of the expression (14) is a biquatemion 
C2 = C @ Ro.2. Recalling that C2 = R3.o and a volume element w = et23 E R3.0 belongs 
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to a center Z3,u = R @ iR, we can write a biquaternion X4ee + X’el + X2e2 + X3e3, where 
ey=ei=l,es=e21 =e2et,intheform 

ReX4eo + ReX’el + ReX2e2 + ReX3e3 

+ Im X3e12 + Im X2e3t + Im X’e23 + Im X4et23 

= (Rex4 +wImX4)ee + (Rex’ +oImX’)el 

+ (Rex2 + w Im X2)e2 + (Rex3 + o Im X3)e3 

= X4eu + X’et + X2e2 + X3e3. (15) 

Further, by means of isomorphisms R3,u E R13 and Rtt E R:3 2 R3,0 the biquatemion 
(15) may be rewritten as (like (9)): 

4 = ReX4Z + Rex' Ziit + ReX2& + ReX3& 

+ImX3r12 +ImX2P3t +ImXtr23 +ImX4Zii123. (16) 

Or in the form (10) if suppose 

41 = Rex4 -iImX3, 
42 = ImX2 -iImXl, 
43 = Rex3 -iImX4, 
+4 = Rex’ +iReX2. 

(17) 

The formulae (17) define a relation between Weierstrass-Konopelchenko coordinates and 
Dirac-Hestenes spinors. This relation is a direct consequence of an isomorphism C2 = 

C @ R0,2 = R3,o g RL3. Further, using the idempotent 1 (1 + fo) i (1 + irl2) it is easy to 
establish (by means of (8)) a relation with the Dirac spinor treated as a minimal left ideal 
of algebra R, I = C4 E Ma(C): 

41 0 0 0 

*= i 42 0 0 0 q53000 1 . 

44 0 0 0 

It is obvious that we cannot directly identify the spinor defined by the formulae (17) with 
a generic “physical” spinor of electron theory, because in accordance with (17) and (12)- 
(13) the spinor 4 depends only on two variables z, Z, or x1, x2 if suppose z = x’ + ix2, 
whilst a physical spinor with four components depends on four variables x’ , x2, 2, x4. 
By this reason we will call the spinor defined by the identities (17) as a sulfate spinor, 
and respectively the field @ = (&,c#Q,c#J~, ~$4)~ will be called a Diruc spinor field on 

sqfuce. The relationship between a surface spinor 4(z, Z) and a physical (space) spinor 
4 (x ’ , x2, x3, x4), and also a relation with the spinor representations of surfaces in spaces 
RPJ will be considered in a separate paper. 

Further, according to Section 2, an algebraic Dirac spinor for R’,3 is an element of 
{ ZZ. ) /R. Then if @ xc0 E Zz,), 02 E Zz, then 02 2: @x,,(modR) if and only if 

#&+ = @&Lc’, u E Spin+(l, 3). (18) 
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Here in accordance with (8) 

The formula (18) defines a transformation law of the Dirac spinor. It is obvious that a 
transformation group of the biquatemion (14) is also isomorphic to Spin+ (1, 3), since 

Spin+(l,3)x((l i)EC2:det(i i)=l}=SL(2:C), 

where SL(2; C) is a double covering of the own Lorentz group &i. Therefore, the trans- 
formations of Weierstrass-Konopelchenko coordinates for su$aces immersed into C4 are 
induced (via the relations (17)) transformation of a DiracJield @ = (41, $9, &,~#q)~ in 
R1.3, where @ E Mq(C)eql is the minimal lefr ideal of &.I S M4(C) defined in some 
orthonormal basis I? E ‘BE. 

On the other hand, if suppose (following [2,3,15]) that the functions p, $(l and vU in (13) 
depend on the deformation parameter t, then the deformations of +a and 40, are defined by 
the following system: 

(19) 

where A, B, C, D are differential operators. The equations (19) define integrable defor- 
mations of surfaces immersed in C4. Let p be a real-valued function; the compatibility 
condition of (19) with (13) is equivalent to the nonlinear partial differential equation for 
p. In the simplest nontrivial case (A, B, C, D are first order operators) it is a modified 
Veselov-Novikov equation [3 11: 

pt + p2-z + pzij + 3p,w + 3p+ + ;p+ + ;pw_ = 0, 

0: = (p$. 

Varying operators A, B, C, D one gets an infinite hierarchy of integrable equations for p 
(modified Veselov-Novikov hierarchy [32,33,3 1,2]). It is obvious that the deformation of 
eat cpol via (19) induced the deformations of the coordinates X’ (z, Z, t) in C4. Moreover, 
according to (14) and (16) treated as a matrix representation of the Dirac-Hestenes spinor 
field 4, we may say that the mVN-deformation generates a deformation of the Dirac field 

0 = ($I?@27 43, &IT. 
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